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Abstract 

There is no way to measure directly the near-ground electric field (potential gradient, PG) from space. We 
examine here the possibilities for deriving PG from space-borne observations as a higher-level product. 
Further, we present an approach to derive PG as well as tropospheric conductivity profiles and columnar 
resistance from space by combining satellite products with reanalysis data and a Long Short-Term Memory 
(LSTM) recurrent neural network model for deep learning.  

Data and methods 

Ground level data 

 We use mean daily data measured in the GLOCAEM station of Xanthi at 41.15°N, 24.92°E (Nicoll et al., 2019) 
during 2011-2018. More details on the measuring site and the instrumentation can be found at Kastelis and 
Kourtidis (2016). Potential gradient as well as meteorological variables (pressure, temperature, humidity, 
precipitation, wind speed and direction) measured at ground level (2 m height) are used. PG was measured 
with a Campbell CS110 field mill with a 1 sec resolution. Wind speed and direction were measured with a Wind 
Sentry Set (Model 03002L, Young Co., U.S.A) consisting of a 3-cup anemometer and a wind vane with accuracy 
+/-0.5 m s-1 and +/-5o, respectively. Temperature and relative humidity were measured with a 
thermometer/hygrometer of +/-1.5% and +/-0.3K accuracy (Model HygroClip S3, Rotronic Co., Switzerland). 
Pressure was measured with a barometric pressure sensor of 0.3 hPa accuracy (Model PTB110, Vaisala Co., 
Finland). Precipitation was measured with a tipping bucket rain gauge (Model 52202, Young Co., U.S.A.). The 
Fair-Weather PG (FWPG) mean daily values used here are the ones where hourly mean FWPG was available 
for >=12 hours.  

Satellite data  

We use MODIS/Aqua collections 5.1 and 6.1 data on aerosol optical depth (AOD), water vapor (WV), cloud 
cover fraction (CC), cloud optical depth (COD), cloud top pressure (CTP) and liquid water path (LWP).  

Although not used here, since their potential application in the studied context is mentioned, a brief 
description of CALIOP data is presented: Since 2006, the Cloud-Aerosol Lidar with Orthogonal Polarization 



(CALIOP), onboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite, 
provides aerosol and cloud vertical profiles at global scale. CALIPSO is a sun-synchronous polar orbit satellite 
with an equatorial crossing time around 13:30 LT and approximately 16 days repetition orbit. CALIOP data are 
organized into different levels providing measured and retrieved quantities as well as higher-level products. 
At Level 1 (L1), fine resolution profiles of the attenuated backscatter at 532 and 1064 nm along with polarized 
backscatter in the visible channel are provided (Winker et al., 2009). The horizontal resolution of CALIOP L1 
data is about one-third of a kilometer while in vertical terms varies from 30 to 180 m and from 60 to 180 m at 
532 and 1064 nm, respectively, decreasing towards higher altitudes. After calibration and range correction, 
cloud and aerosol layers are identified and aerosol backscatter and extinction at 532 and 1064 nm are 
retrieved as part of the Level 2 (L2) dataset. For each category of detectable features (i.e. aerosols and clouds), 
subtyping algorithms are applied for the further discrimination in specific types (Omar et al., 2009). More 
specifically, in the latest available version (Version 4), the aerosol subcategories are: (i) marine, (ii) dust, (iii) 
polluted continental/smoke, (iv) clean continental, (v) polluted dust, (vi) elevated smoke, (vii) dust marine, 
(viii) PSC, (ix) volcanic ash and (x) sulfate. In CALIOP L2 data, the linear particle depolarization ratio at 532 nm 
(Winker et al., 2009) is also provided, which is a necessary parameter for the discrimination between spherical 
and non-spherical (e.g., dust) suspended particles. L2 products are delivered at 5 km horizontal resolution 
while in the vertical varies from 60 to 120 m, depending on the altitude range. Finally, the raw L2 products are 
aggregated to a gridded monthly mean Level 3 (L3) product, providing mean profiles of extinction at 532 nm 
and mean AOD at a 2° x 5° spatial grid resolution (Winker et al., 2013). Similar products, but at finer spatial 
resolution (1° x 1°), are available via the LIVAS (LIdar climatology of Vertical Aerosol Structure for space-based 
lidar simulation studies; lidar.space.noa.gr:8080/livas/; Amiridis et al., 2015) database. Major advancements 
have been applied in LIVAS, with respect to the raw CALIOP L3 data, including averaging calculation within the 
grid cell, a series of quality assurance filters (Marinou et al., 2017), a more realistic lidar ratio for Saharan dust 
(Amiridis et al., 2013) and the implementation of the depolarization-based separation method introduced by 
Tesche et al. (2009) for “isolating” dust component from aerosol mixtures. 
 
Models   

Data was joined to one DataFrame that consists time series of all input parameters and target field 
before future analysis : 

  DF = (𝐾𝐾𝐾𝐾𝐾𝐾 = 𝑡𝑡: 𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷 =< 𝐼𝐼𝐼𝐼�1(𝑡𝑡), … , 𝐼𝐼𝐼𝐼�𝑛𝑛(𝑡𝑡),𝑇𝑇�(𝑡𝑡) >) (1) 

where t is date and time of the key field, 𝐼𝐼𝐼𝐼� and 𝑇𝑇�  are normalized input and output fields, respectively, n –  
number of input fields 

A lag analysis was performed to determine the time delays between input and output factor. According to it, 
the time series of the input field was shifted by the investigated lag down and the correlation coefficient 
between it and the output fields was calculated. The results of the analysis are shown in Table 1. 
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As can bee seen from the table there are not observed any linear and any lag dependencies (R<0.5 for all 
cases). The maximum of correlation coefficients is for lag 0 and 2. Therefore we will use in calculations data 
with this lag interval. 

 

The Linear, back propagation neural networks (ANN) and a Long Short-Term Memory recurrent neural network 
(LSTM) model was used for deep learning.  

The classical linear models, whose coefficients were calculated by regression analysis, were used as base 
models.  

 

For using this type of models, the DataFrame (DF) must first be transformed into a shape: 

𝐷𝐷𝐷𝐷� = (𝐾𝐾𝐾𝐾𝐾𝐾 = 𝑡𝑡: 𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷 =< 𝑇𝑇�1(𝑡𝑡), 𝐼𝐼𝐼𝐼�1(𝑡𝑡), … , 𝐼𝐼𝐼𝐼�𝑛𝑛(𝑡𝑡), 𝐼𝐼𝐼𝐼�1(𝑡𝑡 − 𝑡𝑡1), … , 𝐼𝐼𝐼𝐼�𝑛𝑛(𝑡𝑡 − 𝑡𝑡1), 𝐼𝐼𝐼𝐼�1(𝑡𝑡 −
𝑡𝑡2), … , 𝐼𝐼𝐼𝐼�𝑛𝑛(𝑡𝑡 − 𝑡𝑡2) >)  

(2) 

where t is date and time of the key field, 𝐼𝐼𝐼𝐼� and 𝑇𝑇�  are normalized input and output fields, respectively, and 𝑡𝑡𝑖𝑖  
- time lag.  

The next step is to split 𝐷𝐷𝐷𝐷�   into input and output data: 

𝐷𝐷𝐷𝐷�  𝑡𝑡𝑡𝑡𝑡𝑡 = (𝐾𝐾𝐾𝐾𝐾𝐾 = 𝑡𝑡: 𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡 =< 𝑇𝑇�1(𝑡𝑡) >) (3) 

𝐷𝐷𝐷𝐷�  𝑖𝑖𝑛𝑛 = (𝐾𝐾𝐾𝐾𝐾𝐾 = 𝑡𝑡: 𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝑖𝑖𝑛𝑛 =
<  𝐼𝐼𝐼𝐼�1(𝑡𝑡), … , 𝐼𝐼𝐼𝐼�𝑛𝑛(𝑡𝑡), 𝐼𝐼𝐼𝐼�1(𝑡𝑡 − 𝑡𝑡1), … , 𝐼𝐼𝐼𝐼�𝑛𝑛(𝑡𝑡 − 𝑡𝑡1), 𝐼𝐼𝐼𝐼�1(𝑡𝑡 − 𝑡𝑡2), … , 𝐼𝐼𝐼𝐼�𝑛𝑛(𝑡𝑡 − 𝑡𝑡2)
>) 

(4) 

For LSTM model the tuple of the input field values (𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝑖𝑖𝑛𝑛) was transformed into a three-dimensional 
form: 

𝐷𝐷𝐷𝐷�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖𝑛𝑛 = (𝐾𝐾𝐾𝐾𝐾𝐾 = 𝑡𝑡: 𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝑖𝑖𝑛𝑛 3𝐷𝐷 = {𝑑𝑑𝑡𝑡,𝑙𝑙,𝑓𝑓}𝑡𝑡=1,r𝑠𝑠����� ,𝑙𝑙=0,2����,𝑓𝑓=1,n���� >)  (5) 

where 𝑑𝑑 is input field of tuple 𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝑖𝑖𝑛𝑛, and indexes, t is time (number of rows), l is lag, f is input fields, 𝑟𝑟𝑠𝑠 is 
number of rows of 𝐷𝐷𝐷𝐷�𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖𝑛𝑛 . 



 

 

In order to improve the results, 2 types of neural networks were tested: Back propagation neural networks 
(ANN) and LSTM.  This is a multilayered neural network, the algorithm of learning which method of reverse 
error propagation is chosen. This is one of the basic simple types of neural networks used in nonlinear 
dependency search tasks. In our calculation we used 2 layers ANN that consisted 10 neurons in each of the 
layers. The Adam Optimization Algorithm for Deep Learning was chosen for fitting. The DataFrames of input 
(𝐷𝐷𝐷𝐷�  𝑖𝑖𝑛𝑛 𝑜𝑜𝑟𝑟 𝐷𝐷𝐷𝐷�  LSTM,𝑖𝑖𝑛𝑛) and output 𝐷𝐷𝐷𝐷�  𝑡𝑡𝑡𝑡𝑡𝑡fields was divided on training and test samples in proportion 70/30. 
The Tensorflow framework was chosen to implement this neural network.  

 

 

 

Figure 1. Graph of ANN and LSTM neural networks. 

The structure of the network graph is presented in Figure 1. 

This neural network allows you to simulate the behavior of a system that depends on time delay. This is 
realized by reverse transmission of the neural network output signal at the time t-1 back to the input of one 
of the network layers. This complex input is used to calculate the output for time t. LSTM is a type of the 
recurrent neural network, that allows memorizing values for long or short periods. This network does not use 
activation functions within its recurrent components. Thus, the stored value does not disappear iteratively 
over time. The LSTM blocks contain three or four "valves" that they use to control the information flow to or 
from their memory. These valves are used as logistic function to calculate values between 0 and 1. This value 
multiplies the allowance or denial a partial flow of information to or from that memory (Greff et al., 2017). In 
our calculations the LSTM consists 2 layers: first the LSTM with recurrent loops, and second the classical 
backpropagation layer (figure 1). 

Requirements for a satellite product for atmospheric electricity: The case for PG 

There is no way to measure directly the near-ground electric field (potential gradient, PG) from space. 
However, we develop here an approach to derive PG from space as a Level 4 product, i.e. by combining model 
results with analyses of lower-level data that are measured from space. We will examine below the 



possibilities for deriving Fair-Weather PG (FWPG) from satellite data based on current satellite capabilities and 
possible future developments. 

What would one need as input variables to derive FWPG? Are the input variables available as satellite products 
directly or can be modelled indirectly?  

Firstly, we look at the variables that have been shown theoretically and/or experimentally to influence PG. 

Water in the atmosphere can influence PG. Ground level Specific humidity is strongly anticorrelated with 
FWPG with an r2 of -0.52 (see below). Columnar Water vapour (WV, from the MODIS/Aqua v5.1 collection) 
has been shown to excert a low influence on FWPG (r2=-0.03), with lower FWPG values for high water vapor 
amounts (Kourtidis and Georgoulias, 2017, see Fig. 2 below).  

Stratiform clouds with low base height has been shown to influence surface PG, with lower PG values for lower 
cloud base height, due to negative charge of the cloud base (Nicoll and Harrison, 2016; Harrison et al., 2017). 
Cloud optical depth (COD, from the MODIS/Aqua v5.1 collection) has been shown to excerpt a moderate 
influence on FWPG (r2=-0.07), with lower FWPG values for high cloud optical depth (Kourtidis and Georgoulias, 
2017, see Fig. 2 below). Based also on the results of Harrison et al., 2017, it seems that using not only MODIS 
COD but also MODIS cloud top height (CTH) or cloud top pressure (CTP) better correlations with FWPG could 
be found.   

Atmospheric aerosols can influence ground level PG. In case of Saharan dust aerosols, the aerosol plume base 
is negatively charged through triboelectrification (Silva et al., 2016; Harrison et al., 2018), and hence 
diminishing PG, although different polarities may result from differences in the dust composition (Katz et al., 
2018 and references therein). Fire smoke aerosols exert the opposite influence, considerably enhancing PG 
(Conceição et al., 2016), as do also anthropogenic aerosols, although to a lesser extend (Silva et al., 2014). 
Volcanic ash aerosols are also expected to exert an influence on PG (Aplin et al., 2016). Anthopogenic aerosol 
optical depth (AAOD, from the MODIS/Aqua v5.1 collection) has been shown to excerpt a moderate influence 
on FWPG (r2=-0.06), with lower FWPG values for high AAOD (Kourtidis and Georgoulias, 2017, see Fig. 2 
below). Dust aerosol optical depth (DAOD, from the MODIS/Aqua v5.1 collection) has been shown to excerpt 
a somewhat stronger influence on FWPG (r2=-0.12), with lower FWPG values for high DAOD (Kourtidis and 
Georgoulias, 2017, see Fig. 2 below). 

  



  

Figure 2. Correlation between FWPG and the MODIS/Aqua satellite products (collection 5.1) of atmospheric 
water vapor, cloud optical depth, anthropogenic aerosols and dust aerosols (from Kourtidis and Georgoulias, 
2017). 

So, it appears that the following columnar satellite products will be useful in deriving a PG level 4 product: 
Columnar Water vapour (WV), Cloud Optical Depth (COD), Cloud Top Pressure (CTP), Anthropogenic aerosols 
(AAOD), Dust (DAOD). They are available as satellite products from a variety of sensors, e.g. MODIS collection 
6.1. As MODIS data are easily accessible as daily data, we will try to use mean daily PG data for our purposes.  

Regarding both the cloud as well as the aerosol satellite data, improvements can be further achieved by using 
height-resolved satellite data. The only sensor currently capable of providing such data is the CALIOP Lidar 
onboard CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation), although the revisit time 
of 16 days limits its applicability.      

To obtain FWPG from satellite data, we need to derive a function first, of the form FWPG=f(WV, COD, CTP, 
AOD, Wind Vel., T, humidity…..), or a model. 

After some experiments with data analysis, we opt for an LSTM (Long Short-Term Memory, it is a Recurrent 
Neural Network architecture for deep learning) model FWPG trained with WV, CC, COD, LWP, AOD, Wind 
speed and direction, T, humidity, P and precipitation that appears to describe FWPG satisfactorily. 

An LSTM Model of FWPG 

At Table 1 the r2 of the correlation between FWPG, AWPG and meteorological variables measured 
concurrently at ground level is shown while Table 2 shows the r2 of the correlation between FWPG, AWPG and 
satellite-derived quantities. 

Table 1. Correlation (r2) between FWPG, AWPG and meteorological variables measured at ground level. AWPG 
and FWPG are in V/m. WS is the wind speed in m/s, WD is the wind direction in degrees, Prec is precipitation 
in mm, DewP is the dew point in OC, AbsH is absolute humidity in g/m3 and SpecH is specific humidity. 

 

AWPG FWPG WS WD T(C) RH(%) P(hPa
) 

Prec DP AbsH SpecH 

AWPG 
1 0,277 

0,085
5 0,077 -0,13 -0,07 0,14 -0,253 -0,211 -0,182 -0,238 

FWPG 
0,27 1 

0,114
2 0,216 -0,46 

0,066
7 

0,149
4 

0,032
3 -0,509 -0,473 -0,516 



WS 
0,08 0,114 1 0,525 0,02 -0,27 -0,05 

0,098
6 -0,152 -0,138 -0,176 

WD 
0,07 0,216 

0,525
6 1 -0,16 -0,14 

0,131
7 

0,084
4 -0,303 -0,312 -0,283 

T(C) 
-0,139 -0,461 

0,020
1 -0,169 1 -0,546 -0,405 -0,086 

0,816
0 

0,785
2 0,771 

RH(%) 
-0,069 

0,066
7 -0,273 -0,143 -0,546 1 -0,044 

0,264
5 

0,027
3 

0,036
1 0,071 

P(hPa
) 0,144 

0,149
4 

0,056
5 

0,131
7 -0,405 -0,044 1 

0,186
6 

0,518
6 

0,508
0 -0,504 

Prec 
-0,254 

0,032
3 

0,098
6 

0,084
4 -0,086 0,264 -0,187 1 

0,067
1 

0,072
8 0,070 

DewP 
-0,211 -0,51 -0,152 -0,303 

0,816
0 

0,027
3 -0,519 

0,067
1 1 

0,975
2 0,972 

AbsH 
-0,182 -0,473 -0,138 -0,312 

0,785
2 

0,036
1 -0,508 

0,072
8 

0,975
2 1 0,899 

SpecH 
-0,238 -0,516 -0,176 -0,284 

0,771
7 

0,071
6 -0,504 

0,070
3 

0,972
0 

0,899
2 1 

 

High anticorrelation is noted between FWPG with T (r2=0.46), Dew Point (r2=0.51) and specific humidity 
(r2=0.52). T can be obtained from reanalysis data e.g. from ERA-Interim or ERA5 (Dee at al., 2011), and specific 
humidity can be calculated from those reanalysis data of T, RH, P. ERA5 is produced using European Centre for 
Medium-Range Weather Forecasts’ (ECMWF) Integrated Forecast System (IFS). Atmospheric data are 
interpolated to 37 pressure, 16 potential temperature and 1 potential vorticity level(s), with the top level at 
0.01 hPa. "Surface or single level" data are also available, containing 2D parameters such as precipitation, 2m 
temperature, top of atmosphere radiation and vertical integrals over the entire atmosphere. 
(https://www.ecmwf.int/en/forecasts/datasets/archive-datasets). 

ERA5 has much higher spatial resolution (31 km horizontal grid square instead of 79km for ERA-Interim), higher 
temporal information on variation in quality over space and time (1 hourly resolution instead of 6 hourly), 
much improved troposphere, better global balance of precipitation and evaporation, and more measurement 
parameters than ERA-Interim and can be downloaded from ECMWF. 

From the satellite data of MODIS, high anticorrelation is noted between FWPG with WV (r2=0.40) and between 
FWPG and AOD (r2=0.26), whereas correlation between AWPG and the satellite -derived quantities is generally 
poor. 

Table 2. Correlation (r2) between FWPG, AWPG and satellite-derived quantities. AWPG and FWPG are in V/m. 
AOD is the aerosol optical depth, CC is the cloud cover fraction, WV is the column water vapour in cm, CTP is 
the cloud top pressure in hPa, COD is the cloud optical depth and LWP is the liquid water path in g/m2. 

 AWPG FWPG AOD CC WV  CTP COD LWP 

AWPG 
1 0,277 -0,01211 

0,003602 -0,14646 0,051299 0,003991 -0,01388 

FWPG 
0,27 1 

-0,26435 0,128304 -0,39712 0,012314 -0,03312 -0,04647 

AOD 
-0,01211 

-0,26435 
1 

0,161416 0,361467 -0,15515 0,124979 0,127511 

CC 0,003602 0,128304 0,161416 1 -0,03692 -0,77121 0,281205 0,409708 



WV -0,14646 -0,39712 0,361467 -0,03692 1 -0,16219 0,117814 0,09424 

CTP 0,051299 0,012314 -0,15515 -0,77121 -0,16219 1 -0,14449 -0,3594 

COD 0,003991 -0,03312 0,124979 0,281205 0,117814 -0,14449 1 0,738223 

LWP -0,01388 -0,04647 0,127511 0,409708 0,09424 -0,3594 0,738223 1 

 

Training the models (LINEAR=Linear Model, LSTM=Long Short-Term Memory [Reccurent NN architecture for 
deep learning] and ANN=Artificial Neural Network) we obtain the results below when trying to reproduce 
measured FWPG from the models. LSTM performs better (Fig. 3). In Fig. 4 are the results for a portion of the 
timeseries, for clarity. 
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Figure 3. Measured daily mean FWPG (only days where at least 12 hourly measurements are available) versus 
FWPG calculated with linear, ANN and LSTM models trained using wind speed, wind direction, temperature, 
relative humidity, pressure, precipitation, and specific humidity as input. 
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Figure 4. Measured daily mean FWPG (only days where at least 12 hourly measurements are available) versus 
FWPG calculated with LSTM model, for a portion (200 days) of the timeseries. 

As, the LSTM model having as input the satellite derived quantities of AOD, CC, COD, CTP and WV and the 
temperature, Dew Point and specific humidity data which can be obtained from ERA5 can reproduce fairly 
well the variations of mean daily near-ground FWPG, it appears that in principle the derivation of a Level 4 
product for FWPG is possible. 

The wider spatial applicability of the model functions derived from a single site has to be studied. 

Potential for further developments  

1.A satellite product for conductivity profile and columnar resistance 

A related physically-based approach could be considered vertically too, to allow calculation of the conductivity, 
either columnar or at various levels, and then integrated to obtain the columnar resistance. The optical depth 
data (either columnar from MODIS or vertical profiles from CALIOP) would give the aerosol term, and the 
cosmic ray ion production profile could come from relevant models, e.g. the CRAC-CRII (Usoskin and Kovaltsov, 
2006; Usoskin et al., 2010) model.   

Radon profiles would ideally be needed too for the lower atmosphere.  222Rn has a half-life of 3.8 days and can 
produce ionization rates of 5–10 cm-3s-1 (Hoppel et al., 1986) near ground level, depending on convection. 
The vertical height distribution depends on convection, and is strongest in local summer, increasing the 222Rn 
mixing ratio at higher altitudes, and decreasing the concentration at the surface, when compared to winter 
values. Other effects are due to advection by winds. The data of Dentener et al. (1999) for 222Rn 
concentrations in July and December near the surface, and estimates of the vertical distribution (Figure 2 of 
Dentener et al., 1999). The Dentener et al. [1999] data are in mBq SCM-1 (milli-Bequerel per standard cubic 
meter) obtained from the application of a global circulation model to the recommended World Climate 
Research Programme (WCRP) gaseous emission rate of 222Rn. 



 
As a Level 4 satellite product, conductivity and columnar resistance globally could be very useful. It could also 
be used for model validation, e.g. the validation of the CCM SOCOL v2 (Lucas, 2010; Mareev and Volodin, 
2014). If the ionospheric potential was known (from one global measurement), it would allow the calculation 
of the global circuit component of the surface potential gradient. As 90% of the atmospheric columnar 
resistance is below 6-7 km altitude (Rycroft et al., 2008), and as satellite products of tropospheric profiles of 
aerosols and clouds are available from CALIOP, conductivity profiles could be derived, as explained further 
below.  

As column resistance is defined as the vertical integration of the reciprocal of conductivity, 
Rcol= surface to ionosphere∫1dz/σ(z) , 

where dz are the layer thicknesses, then the column resistance could also be calculated from satellite data. 
 
Given the fact that most of the resistance is in the troposphere, and that the CALIOP vertical resolution varies 
from 60 to 120 m at 532 nm, decreasing towards higher altitudes, a dz varying around 500 m to fit the CALIOP 
layers could be used. 
 
A close correlation exists between the concentration of small ions and polar conductivity near the surface of 
Earth. In the presence of large aerosol particles, losses in the small ion concentration are caused not only due 
to the ion–ion recombination process, but also due to attachment of small ions to the aerosol particles. This 
renders the small ions almost immobile and causes a decrease in conductivity of the atmosphere. This results 
in an expected inverse relationship between the aerosol concentration and the electrical conductivity (Cobb 
and Wells, 1970; Cobb, 1973). Mani and Huddar (1972) observed a decrease in conductivity presumably 
caused by the increase in particles at Pune, India over a period of 20 years and Kamra and Deshpande (1995) 
attributed the increase of conductivity over the Bay of Bengal with distance from the coast to land air pollution 
outflow. Hogan et al., (1973) pointed out that the conductivity inversely follows the product of aerosol size 
and number density better than the number density alone.  Retalis (1977) noted the negative correlation 
between smoke and small air ions concentration in Athens. 
 
Since aerosols influence not only the small air ion concentration but also the optical properties of the 
atmosphere, a relationship between optical and electrical properties should be expected. Such a relationship 
is supported by observations. On hourly timescales, Ruhnke (1966) reported a positive correlation between 
visibility and ion number concentration, and Manes (1977) showed coincident decreasing annual trends in 
visibility and conductivity. Tsunoda and Satsutani (1977) found increases in visibility coincident with both an 
increase in air conductivity and particle number concentration decreases. Brazenor and Harrison (2005) also 
found an empirical relationship between air conductivity and visibility, for urban air. 

Harrison (2012) derived theoretically aerosol–conductivity relationships for fog droplets and compared these 
with routine visual range and potential gradient measurements. The relationship between the electrical and 
optical properties of air can be understood in terms of common aerosol effects on both quantities, by 
combining the theoretical descriptions independently available in each case. 

Using an approach similar to the modelling approach of Baumgartner et al (2014) but using satellite data 
instead and the Harrison (2012) parameterization one could obtain columnar resistance from satellite data. 

2.Estimations of ionospheric potential 
 
Lightning is a parameter that can be obtained from satellites to estimate the source regions of the GEC.  By 
observing the global distribution of lightning, it is possible to locate the thunderstorm regions, and assign 
estimates of the conduction currents produced above these storms.  The sum of all these currents (~1 Amp 
each storm) will supply the total current in the GEC. Knowing the resistance of the fair-weather portion of the 
atmosphere (see above) will allow us to estimate the ionospheric potential. 



 

3. Other 

The source region of the GEC is defined by both shower clouds and thunderstorms that produce conduction 
currents up to the ionosphere.  One indicator of the intensity of thunderstorms is from the microwave 
emissions from the top of storm clouds.  While the intensity of thunderstorms is not necessarily related to the 
current density above these storms, it does allow us to map out the location of the source generators.  
http://severeweather.wmo.int/TCFW/RAIV_Workshop2017/08a_Microwave_Lecture_JohnCangialosi_DaveR
oberts.pdf 
 

Conclusions 
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